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Abstract. The exact solution and the invariant operator of a generalized harmonic 
oscillator are obtained by performing three consecutive gauge transformations on the 
time-dependent Schrodinger equation. In contrast to previous results, they depend only 
on solutions of a linear differential equation for the associated classical harmonic 
oscillator. Non-adiabatic and adiabatic Berry phases for the system are calculated on the 
basis of the exact solution. 

As is well known, small vibrations of dynamic systems can be described in terms of 
harmonic oscillators in both quantum and classical mechanics. To include surrounding 
influences on the vibration, or to simulate the coupling of the vibration with other 
degrees of freedom, one can consider time-dependent parameters specifying the 
Hamiltonian of a harmonic oscillator, such as the mass and the frequency. Although 
in general the time dependent harmonic  oscillator^ is only an approximate description 
of the vibration, it is the first step towards the study of more complicated motion of 
dynamic systems. In some particular cases. however, this description may become 
exact. For example, the motion of an ion in a Paul trap is precisely described by a 
harmonic oscillator with periodically time-dependent frequency [I]. Recent studies 
12-71 have shown that a time-dependent harmonic oscillator can acquire Berry phase 
when its parameters undergo a cyclic change. It is therefore of great interest to study 
the ‘generalized harmonic oscillator’ or a harmonic oscillator with time-dependent 
mass and frequency. 

There have~been two approaches to this problem. One is the evolution operator 
method developed by Wei and Norman [SI. The other is the invariant operator 
method proposed by Lewis and Riesenfeld 191. The former has the advantage that it 
provides a systematic way to construct an evolution operator of the time-dependent 
Schrodinger equation with the Hamiltonian being a linear function of operators of an 
algebra. It has been shown that the Hamiltonian of a generalized harmonic oscillator 
can be written as a linear function of operators of an su(1,l) algebra [lo-12.1. 

0301-4470/94/030985 +08 $07.50 0 1994 IOP Publishing Ltd 985 



986 Fu-li Li et al 

Therefore, in principle, the evolution operator of the time-dependent Schrodinger 
equation for a generalized harmonic oscillator can be constructed in terms of solutions 
of a second-order differential equation [lo-121. Because the evolution operator has to 
be unitary and has to satisfy a special initial condition, the solution which is used to 
construct the evolution operator must be real and must obey corresponding initial 
conditions [12]. As a consequence, the evolution operator becomes a complicated 
functional of the solution [lo, U]. Thus the evolution operator method provides only 
a formal solution of the problem in general. Besides, it does not give information 
about invariant quantities of the time-dependent system. In contrast, the invariant 
operator method emphasizes that a generalized harmonic oscillator has a time- 
dependent Hermitian invariant operator. It has been shown that the general solution 
of the time-dependent Schrodinger equation for the oscillator can be expressed as a 
linear superposition of eigenstates of~the invariant operator, and that the coefficients 
in the superposition are independent of time [4,9]. 

Because of the existence of an invariant operator, a generalized harmonic 
oscillator must be integrable. For an integrable system, the Hamiltonian can be 
transformed into a sum of time-independent commuting operators through a series of 
time-dependent gauge transformations [13]. As a consequence, the general solution of 
the time-dependent Schrodinger equation for an integrable system can be written as a 
linear superposition of common eigenstates of these commuting operators. In this 
paper, we show that the exact solution of a generalized harmonic oscillator can be 
found by introducing three consecutive gauge transformations. A time-dependent 
invariant operator for the system appears automatically in the process. We also show 
that the auxiliary functions for constructing the invariant operator are just solutions of 
the classical velocity-dependent harmonic oscillator with time-dependent mass and 
frequency. On the basis of the exact solution, non-adiabatic and adiabatic Berry 
phases are calculated. 

Consider a generalized harmonic oscillator with the Hamiltonian given by 

A(r) =S[Z(t)@’+ Y(t) (@ +@d)  +X( t )@]  (1) 
where X(t ) ,  Y(t)  and Z(t) are non-singular and real functions of time. The system 
evolves in time according to the Schrodinger equation (assume h = 1) 

a 
i I y(t)) = f l( l)  I v(l)). (2) 

/Y’(r))= U(t)-‘lY(t)). (3) 

Suppose that U(t) is a time-dependent transformation such that 

Substituting (3) into (2), we find the equation of motion for lY’(t)), 

In the above equation, the new Hamiltonian operator 

should be Hermitian. This requires that U(t) must be a unitary operator. Since the 
Hamiltonian (1) of the system is dependent on time, U(f )  results in a gauge 
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transformation (3) for the wavefunction and a gauge transformation (5) for the 
Hamiltonian so that the form of the Schrodinger equation remains gauge invariant. It 
should be emphasized that the fundamental operators @ a n d 3  do not depend on time 
in the Schrodinger picture 1141. 

In order to solve (2) with the Hamiltonian specified by (l), we first try to remove 
the cross term in the Hamiltonian (1). This can be achieved by the transformation 

U,(t)=exp -- Y(t’) dt‘(@+Pp) . (6)  [ is1 1 ’ ~’ 

It can easily be shown that under this transformation the coordinate and momentum 
operators change according to 

U;’(t)pU1(f)=pexp[ -[ Y(t’) dt!] 

U;*(t)pU,(i)=pexp[/: Y(f‘)dt’]. 

Inserting (6)-(8) into (4), we have 

where 

m(f) =exp(Z/: Y(t’) dt‘) (Z(t))-‘ 

~&(t)=exp(2/:Y(t’) d;) X(t). (11) 

(10) 

Next we consider the following transformations: 

IY’(t))= u,(t)lY(t))=exp[iC,(t)@]lY”(t)) (12) 

lY”(t))= U3(t)lY”’(f))= exp[iC,(t) ( p d +  @)]IY”’(t)) (13) 
where C,(t) and Cz(i) are real functions of time. These coefficients are chosen in such a 
way that the Hamiltonian in (9), after these transformations, becomes a product of 
two factors, namely a simple time-independent harmonic oscillator Hamiltonian 
multiplied by an overall time-dependent factor. 

The equation of motion for the coordinate q(r) with the classic counterpart of the 
Hamiltonian in (9) is 

m k  
m m  q+-q+-q=o 

where the dot denotes differentiation with respect to time, and m and k are defined by 
(10) and (11). Assume that f(f) and f*(t)  are two linearly independent complex 
conjugate solutions of (14). Substitutingf(r) andf*(r) into (14), it can easily be shown 
that they satisfy the condition. ~ 

d 
- dt [mcff* -ff*)] =o. (15) 
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As a consequence, one has 
m ( j *  -fY) =2iw 

where W is a real constant. 

momentum operators as 
Now let us perform the transformation U2(l), which transforms the coordinate and 

U; y t ) p  U&) = p + 2C1Q (17) 

U;'(r)@u,(l) = 8. (18) 
Substituting (12) into (9) and using (17) and (IS), we find the equation of motion for 
I W t ) ) ,  

(. 2:f ;) ] Cl 
i-lY"(l))= -p '+ -@j+@)+  Cl+-+- g2 lY"(t)). (19) 

d t  a [;m m 

Choosing 

m(t) f f *  
4 f f "  C,(t) =- (-+ -) 

and utilizing (14) and (16), one can show that (19) becomes 

We now consider the transformation U&). Since this transformation is formally 
the same as U,(t), it is seen from (7) and (8) thatp and 4 undergo only a scaling change 
under Cr3(t). This suggests that one can remove the cross term in (21) by taking 

Cdt) = -+W@)l2. (22) 
With this choice, (21) is changed under the transformation into 

a 1 
i -  l'&"'(t))=-(p'+ W2~Z)lY"'(f)) 
at 2mlf12 (23) 

which is just what we are looking for. Obviously, one can write the solution of (23) as 

To get an explicit form of the solution, let us assume the initial state 

IY"'(O))= In) (25) 

+(p' + W'Q2) In) = (n + .$)W/ n )  (26) 

which satisfies the eigenequation 
n=O,1,2 ,.... 

Inserting (25) into (24), we have 

The exact solution of the original equation (2) can now be found by combining the 
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above results. We finally obtain 

I Y" ( t ) )  = U&) U&) U&) I YF ( t ) )  

where 

p(t)= Im(f(t)f'L(t))=.W/m(t). 

In q-representation, the state vector (28) takes the form 

where H .  are Hermite polynomials. Now let us consider the operator 

i(r) = U,(t) U&) U&)@ * + w 2 4  2) U;-'@) UT'(t) U;'(t) 

It can be shown by direct substitution that f ( t )  satisfies the equation 

d i  a i  
_=- +i[A;i]=o. dt at 

Thus f(t) is a time-dependent Hermitian invariant operator. Applying f(t) to (28) or 
(30), we can show that 

(33) 
is an eigenstate of f(t) with the eigenvalue (n++)W. Since (30) is the solution of (2) 
with initial condition (25) and differs from (33) only by the time-dependent phase 

a&) = - ( n  + ;) 11% dt' 

the general solution of (2) can be written as 

(34) 

where a. are time-independent expansion coefficients to be determined by the initial 
condition Y(q, 0). Expression (35) is just what is anticipated by the Lewis-Riesenfeld 
theory [ 9 ] .  It is clear from (31)  and (33) that when a scaling transformation is 
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performed on f(t) and f ( t ) * ,  the invariant operator f(t) undergoes a corresponding 
scaling transformation, while the eigenstates do not change. Hence the solution (35) 
does not depend on the scaling of the solution of (14). It has been claimed in the 
literature that the exact solution of (2) and the invariant operator which satisfies (32) 
have been found [Z, 4,5,9]. These results, however, depend on a function of time 
which has to be determined by solving a nonlinear second-order differential equation. 
In the present case, the functionf(t) is only a complex solution of the linear equation 
(14). Furthermore, since (14) results from the classical canonical equation for the 
coordinate q(t) and the momentum p( t )  with the classical counterpart of the 
Hamiltonian in (9), the relation between the classical and quantum motion now 
becomes more transparent [13]. 

Now let us calculate the Berry phase for the generalized harmonic oscillator from 
the state vector in q-representation, (30). Suppose that at t = O  the oscillator is in the 
nth eigenstate of the invariant operator f ( t ) .  It will evolve into the state specified by 
(30) at a later time t .  If the parameters X(t ) ,  Y(t) and Z(t) are periodic functions of 
time with the same period T,  i.e. X(t+ T )  =X( t ) ,  Y(t+ T )  = Y(t) and Z(t+  T )  = Z( t ) ,  
(14) may have periodic solutions. When the auxiliary functionf(t) in (30) is a periodic 
solution of (14), i.e. f(t+ T )  =f(t), then after one period of evolution the system 
returns to the intial state except for acquiring the total phase 

The conventional dynamic phase obtained over one period is 

q d =  (yn( t ’ ) lA lyn( t ‘ )@t ’  

Tlf 1’ + 2Y Recff*) + ZXifl’ 
I: 
=‘(.+kj 2 1 0 B(t’) 

dt’. 

Therefore, the non-adiabatic Berry phase [U] is given by 

P ) B =  P)! + P)d 

(37) 

Since B(t) is quadratic in f ( t )  and f*(t), it is clear from (38) that the non-adiabatic 
Berry phase does not change under a scaling transformation of f(t). 

We now show that in the adiabatic limit the phase (38) recovers the expression for 
the Berry phase as existing in the literature [2-71. Substituting (10) and (11) into (14), 
we have 

q(t)+ 2Y-- q(r)+XZq(t)=O. ( z) 
Setting 

(39) 
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and substituting it into (39), we find the equation of motion for Q(t), 

e(!)+ 
If the parameters X ( f ) ,  Y( t )  and Z(t) vary so slowly in time that terms .involving 2 and 
2 in (41) can be negleded, we expect that Q(t) takes the form 

where S(t) is a slowly varying' function of time. Substituting (42) into (41) and 
neglecting the term involving S, we find, 

where 

O&) = V Z F P .  

(43) 

In the adiabatic limit, it is sufficient to go in the expansion (43) up to the second term. 
Therefore, the adiabatic approximate solution of (39) is given by 

q(t) = ex,[ - J:( Y+ io.(t,) - i 7 2w,(f) z 7 dt (?) 2 dt']. (45) 

Replacingf(t) andf(t)* in (36) and (37) by q(t) and q(t)*, we obtain in the adiabatic 
limit the total and dynamic phases 

q,,=(n++) w.(t') dt'. 

Consequently, the adiabatic Berry phase is given by 
1: (47) 

which recovers the result of [2-71. It is noted here that the adiabatic Berry phase (48) 
becomes zero but the non-adiabatic one (38) still exists when the crossing term in (1) 
vanishes [4]. 

In conclusion, we have found the exact solution of the time-dependent 
Schrodinger equation for a generalized harmonic oscillator and the explicit expression 
of the time-dependent invariant operator by performing gauge transformations on the 
time-dependent Schrodinger equation. In contrast to existing results, the present 
solution and the invariant operator depend only on solutions of a linear differential 
equation which describes the classical harmonic oscillator with time-dependent mass 
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and frequency. We have also found the exact expression of the non-adiabatic Berry 
phase for the oscillator and shown that it reduces to the usual adiabatic Berry phase 
when the parameters of the Hamiltonian vary slowly in time. 
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